neutral oxalate by adding a solution of 1 g. anhydrous oxalic acid in 10 cc. absolute alcohol. Yield 1.65 g. (93%). It was recrystallized from 80% alcohol and had a m.p. 201-202°.

Anal. Calcd. for $C_{10}H_{24}O_8N_2$: C, 40.0; H, 8.0; N, 9.3. Found: C, 39.9; H, 8.1; N, 9.3.

DL-Threeninol. Three and one half g. of raw N-benzylthreenine was debenzylated as above and converted into the neutral oxalate. Yield 2.55 g. (94%). After recrystallization from 80% alcohol, it had m.p. 211.5° (dec.).

Anal. Calcd. for $C_{10}H_{24}O_8N_2$: C, 40.0; H, 8.0; N, 9.3. Found: C, 40.0; H, 7.6; N, 9.3.

THE DANIEL SIEFF RESEARCH INSTITUTE THE WEIZMANN INSTITUTE OF SCIENCE REHOVOTH, ISRAEL

LABORATORIUM VOOR PHYSIOLOGISCHE CHEMIE Der Rijksuniversiteit te Utrecht (Nederland)

C=N Stretching Frequency in Infrared Spectra of Aromatic Azomethines

> Leo E. Clougherty, John A. Sousa, and George M. Wyman

Received October 29, 1956

In conjunction with a study of the stereochemistry of aromatic Schiff-bases, 17 compounds of this type have been synthesized by standard techniques¹ and their infrared spectra determined. Each compound was found to exhibit an absorption band of medium intensity in the double-bond stretching region at 1613–1631 cm.⁻¹, as shown in Table I. This band, which occurs in the spectra just to the high frequency side of the normal aro-

Т	A	B	L	Е	I

C=N STRETCHING FREQUENCIES IN AROMATIC SCHIFF BASES. (Measurements made on Beckman IR-3 spectrophotometer, NaCl optics.)

Compound	Frequency $(\mathrm{cm}^{-1})^a$
N-benzylidineaniline*	1631
N-(2-hydroxy)benzylidineaniline*	1622
N-(4-hydroxy)benzylidineaniline	16 2 96
N-(4-methoxy)benzylidineaniline*	1630
N-(2-nitro)benzylidineaniline	1621^{b}
N-(4-acetylamino)benzylidineaniline	1629°
N-(4-dimethylamino)benzylidineaniline*	1626
N-benzylidine-2-aminophenol	1629
N-benzvlidine-2-anisidine	1631°
N-(4-methoxy)benzylidine-2-anisidine	1627^{o}
N-benzylidine-4-anisidine*	1629
N-(4-methoxy)benzylidine-4-anisidine	1626*
N-benzylidine-4-toluidine	1628°
N-benzylidine- N' -dimethyl-4-phenylenediamine*	1627
N-(2-hydroxy)benzylidine-2-aminophenol	1624^{b}
N-(4-dimethylamino)benzylidine-2-aminophenol	1613
N, N'-dibenzylidine-4-phenylenediamine	1628

^a in CCl₄ solution; ^b in CHCl₅ solution; ^c as KBr pellets; * indicates the compounds reduced using NaBH₄. matic band near 1600 cm.⁻¹, appears to be of considerable diagnostic value.

The absorption frequency characteristic of the stretching mode of the C-N group in compounds of this type has not been known with any degree of certainty.² Therefore, in order to ascertain whether the absorption band in this region was attributable to the C=N group, it was necessary to compare the infrared spectra of the Schiff-bases with those of similar compounds that do not contain this grouping. Consequently, six of the azomethines listed in Table I were reduced to the corresponding substituted N-benzylanilines by means of sodium borohydride, using a modification of the procedure of Chaikin and Brown.³ Since this band is absent in the infrared spectra of these amines, this indicates that the absorption bands shown by N-benzylidine aniline and its ring-substituted derivatives are indeed due to the stretching mode of the C=N group.

It is also worth noting that the sodium borohydride reduction of aromatic azomethines usually proceeds very smoothly and results in fair yields (60-80% of theoretical). Consequently this reaction may find application in the synthesis of secondary amines of this type.

PIONEERING RESEARCH DIVISION

QUARTERMASTER RESEARCH & DEVELOPMENT CENTER NATICK, MASS.

(2) L. J. Bellamy, *The Infrared Spectra of Complex Molecules*, John Wiley and Sons, New York, N. Y. (1954), pp. 226–229.

(3) S. W. Chaikin and W. G. Brown, J. Am. Chem. Soc. 71, 122 (1949).

Chloroalkyl and Chloroaryl Chloromethylphosphonates

RICHARD L. MCCONNELL, MARVIN A. MCCALL, AND H. W. COOVER, JR.

Received October 29, 1956

In 1950, Kabachnik and Medved reported the preparation of chloromethylphosphonic dichloride by the reaction of paraformaldehyde with phosphorus trichloride.¹ We have prepared and characterized several chlorinated esters from this acid chloride.

In order to prevent alkyl halide formation when an alcohol reacts with a phosphonic chloride, it is generally necessary to use a tertiary amine to absorb the liberated hydrogen chloride. We found, however, that 2-chloroethanol and 2,2,2-trichloroethanol could be successfully treated with chloromethylphosphonic dichloride at reflux tempera-

⁽¹⁾ Cf. G. Smets and A. Delvaux, Bull. soc. chim. Belg., 56, 106 (1947).

⁽¹⁾ M. I. Kabachnik and T. Ya. Medved, *Izvest. Akad. Nauk S.S.S.R.*, Otdel Khim Nauk, 635 (1950); [Chem. Abstr., **45**, 8444 (1951)].